Get Free Shipping on orders over $79
The Gradient Discretisation Method : Mathématiques et Applications : Book 82 - Jérôme Droniou

The Gradient Discretisation Method

By: Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaèle Herbin

eText | 31 July 2018

At a Glance

eText


$89.00

or 4 interest-free payments of $22.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray-Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes.

on
Desktop
Tablet
Mobile

More in Differential Calculus & Equations

An Introduction to Applied Numerical Analysis - M Ali Hooshyar

eBOOK