Get Free Shipping on orders over $79
The Art of Deep Learning Image Augmentation : The Seeds of Success - Jyotismita Chaki

The Art of Deep Learning Image Augmentation

The Seeds of Success

By: Jyotismita Chaki

eText | 2 May 2025

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book addresses the critical challenge of limited training data in deep learning for computer vision by exploring and evaluating various image augmentation techniques, with a particular emphasis on deep learning-based methods. Chapter 1 establishes the core problem of data scarcity, outlining its negative impacts on model performance, and introduces traditional image augmentation techniques like geometric transformations, color space manipulations, and other methods such as noise injection. It highlights the limitations of these traditional approaches, including limited variation, lack of control, and inability to introduce new information, before introducing the advantages of deep learning-based augmentation, such as superior control, task adaptability, enhanced realism, and automation. Chapter 2 delves into GAN-based image augmentation, discussing how GANs generate realistic synthetic images for various applications like super-resolution and image-to-image translation, while also addressing the challenges associated with GAN training and potential future directions. Chapter 3 explores autoencoder-based image augmentation, covering techniques like VAEs, DAEs, and AAEs, and highlighting architectural considerations and challenges such as overfitting. Chapter 4 showcases the diverse applications of deep learning-based image augmentation and how it enhances various computer vision tasks by improving generalization, robustness, and accuracy. Chapter 5 discusses strategies for evaluating and optimizing deep learning image augmentation, including traditional metrics, image quality metrics, and hyperparameter tuning techniques. Finally, Chapter 6 explores cutting-edge advancements, covering AutoAugment, interpretable augmentation, attention-based augmentation, counterfactual augmentation, and human-in-the-loop augmentation, emphasizing the role of human expertise in creating high-quality augmented data.

on
Desktop
Tablet
Mobile

More in Artificial Intelligence

Medium Hot : Images in the Age of Heat - Hito Steyerl

eBOOK

RRP $22.66

$18.99

16%
OFF
AI Futures - Evgeny Morozov

eBOOK

RRP $16.88

$13.99

17%
OFF
AI-Powered Search - Trey Grainger

eBOOK

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK