Get Free Shipping on orders over $79
TensorFlow for Deep Learning : From Linear Regression to Reinforcement Learning - Bharath Ramsundar

TensorFlow for Deep Learning

From Linear Regression to Reinforcement Learning

By: Bharath Ramsundar, Reza Bosagh Zadeh

eText | 1 March 2018 | Edition Number 1

At a Glance

eText


$49.49

or 4 interest-free payments of $12.37 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Learn how to solve challenging machine learning problems with TensorFlow, Google's revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects in images, understanding text, analyzing video, and predicting the properties of potential medicines.

TensorFlow for Deep Learning teaches concepts through practical examples and helps you build knowledge of deep learning foundations from the ground up. It's ideal for practicing developers with experience designing software systems, and useful for scientists and other professionals familiar with scripting but not necessarily with designing learning algorithms.

  • Learn TensorFlow fundamentals, including how to perform basic computation
  • Build simple learning systems to understand their mathematical foundations
  • Dive into fully connected deep networks used in thousands of applications
  • Turn prototypes into high-quality models with hyperparameter optimization
  • Process images with convolutional neural networks
  • Handle natural language datasets with recurrent neural networks
  • Use reinforcement learning to solve games such as tic-tac-toe
  • Train deep networks with hardware including GPUs and tensor processing units
on
Desktop
Tablet
Mobile

More in Neural Networks & Fuzzy Systems