Get Free Shipping on orders over $79
Statistical Learning from a Regression Perspective : Mathematics and Statistics (R0) - Richard A. Berk

Statistical Learning from a Regression Perspective

By: Richard A. Berk

eText | 29 June 2020 | Edition Number 3

At a Glance

eText


$129.00

or 4 interest-free payments of $32.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This textbook considers statistical learning applications when interest centers on the conditional distribution of a response variable, given a set of predictors, and in the absence of a credible model that can be specified before the data analysis begins. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis depends in an integrated fashion on sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. The unifying theme is that supervised learning properly can be seen as a form of regression analysis. Key concepts and procedures are illustrated with a large number of real applications and their associated code in R, with an eye toward practical implications. The growing integration of computer science and statistics is well represented including the occasional, but salient, tensions that result. Throughout, there are links to the big picture.

The third edition considers significant advances in recent years, among which are:

  • the development of overarching, conceptual frameworks for statistical learning;
  • the impact of "big data" on statistical learning;
  • the nature and consequences of post-model selection statistical inference;
  • deep learning in various forms;
  • the special challenges to statistical inference posed by statistical learning;
  • the fundamental connections between data collection and data analysis;
  • interdisciplinary ethical and political issues surrounding the application of algorithmic methods in a wide variety of fields, each linked to concerns about transparency, fairness, and accuracy.

This edition features new sections on accuracy, transparency, and fairness, as well as a new chapter on deep learning. Precursors to deep learning get an expanded treatment. The connections between fitting and forecasting are considered in greater depth. Discussion of the estimation targets for algorithmic methods is revised and expanded throughout to reflect the latest research. Resampling procedures are emphasized. The material is written for upper undergraduate and graduate students in the social, psychological and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems.

on
Desktop
Tablet
Mobile

Other Editions and Formats

PDF

Published: 26th October 2016

Instant online reading in your Booktopia eTextbook Library *

Hardcover

Published: 30th June 2020

Paperback

Published: 16th June 2018

Paperback

Published: 30th June 2021

More in Probability & Statistics

untitled - TBC ANZ

eBOOK

$31.99

An Introduction to Stochastic Modeling - Gabriel Lord

eBOOK

RRP $145.41

$130.99

10%
OFF