Get Free Shipping on orders over $79
Stabilizing and Optimizing Control for Time-Delay Systems : Including Model Predictive Controls - Wook Hyun Kwon

Stabilizing and Optimizing Control for Time-Delay Systems

Including Model Predictive Controls

By: Wook Hyun Kwon, PooGyeon Park

eText | 6 July 2018

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Stabilizing and Optimizing Control for Time-Delay Systems introduces three important classes of stabilizing controls for time-delay systems: non-optimal (without performance criteria); suboptimal (including guaranteed costs); and optimal controls. Each class is treated in detail and compared in terms of prior control structures. State- and input-delayed systems are considered. The book provides a unified mathematical framework with common notation being used throughout.

Receding-horizon, or model predictive, linear quadratic (LQ), linear-quadratic-Gaussian and H? controls for time-delay systems are chosen as optimal stabilizing controls. Cost monotonicity is investigated in order to guarantee the asymptotic stability of closed-loop systems operating with such controls.

The authors use guaranteed LQ and H? controls as representative sub-optimal methods; these are obtained with pre-determined control structures and certain upper bounds of performance criteria. Non-optimal stabilizing controls are obtained with predetermined control structures but with no performance criteria. Recently developed inequalities are exploited to obtain less conservative results.

To facilitate computation, the authors use linear matrix inequalities to represent gain matrices for non-optimal and sub-optimal stabilizing controls, and all the initial conditions of coupled differential Riccati equations of optimal stabilizing controls. Numerical examples are provided with MATLAB® codes (downloadable from http://extras.springer.com/) to give readers guidance in working with more difficult optimal and suboptimal controls.

Academic researchers studying control of a variety of real processes in chemistry, biology, transportation, digital communication networks and mechanical systems that are subject to time delays will find the results presented in Stabilizing and Optimizing Control for Time-Delay Systems to be helpfulin their work. Practitioners working in related sectors of industry will also find this book to be of use in developing real-world control systems for the many time-delayed processes they encounter.

on
Desktop
Tablet
Mobile

More in Cybernetics & Systems Theory

Life is a wave function - Abhay Kulkarni

eBOOK

The Science of Happy - King Poet

eBOOK

The Unity of Forces - manoranjan ghoshal

eBOOK

AI The Gift of a Lifetime - Loïc Molla

eBOOK

Ultimate Mind theory - david gindis

eBOOK

The Best fit Theory - Pankaj

eBOOK