Get Free Shipping on orders over $79
Smart Materials Engineering : Data-Driven Approaches and Multiscale Modelling - Ali Ahmadian

Smart Materials Engineering

Data-Driven Approaches and Multiscale Modelling

By: Ali Ahmadian (Editor), Sambhrant Srivastava (Editor), Ashok Kumar Yadav (Editor), Vijay Kumar (Editor), Pramod Kumar Srivastava (Editor)

eText | 1 January 2026

At a Glance

eText


$329.00

or 4 interest-free payments of $82.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book bridges the gap between conventional materials science and emerging data-driven methodologies, highlighting the integration of AI, machine learning, and deep learning technologies to enhance the design, analysis, and optimization of smart materials. It provides a holistic perspective essential for researchers, engineers, and students exploring the intersection of materials engineering and AI technologies.

The book examines the connection between recent advancements in materials science and multiscale machine learning, facilitating predictive and prescriptive modeling for assessing material behavior based on composition, structure, and processing. It includes comprehensive discussions on smart material design, optimization, complexity analysis, and advanced computational methods for synthesizing and characterizing materials. Challenges in multiscale modeling, such as biologically inspired material design and the influence of nanotechnology on current trends, are thoroughly explored.

Emphasizing the critical role of multiscale machine learning and nanotechnology in creating sustainable smart materials, the book also addresses the ethical implications of this research. It discusses opportunities and challenges in biomaterials, particularly in healthcare and biomedical applications, and anticipates future trends in machine learning for sustainable materials design. The book provides insights into how predictive and prescriptive modeling through machine learning can accelerate the material discovery process, guiding researchers toward promising candidates for further exploration.

Serving as a roadmap for researchers and scientists, this book offers valuable insights into innovative approaches that support the future of materials science.

on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI-Powered Search - Trey Grainger

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK