Get Free Shipping on orders over $79
Shock Wave Interactions in General Relativity : A Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes - Jeffrey Groah

Shock Wave Interactions in General Relativity

A Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes

By: Jeffrey Groah, Joel Smoller, Blake Temple

eText | 3 April 2007

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
General relativity is the modern theory of the gravitational ?eld. It is a deep subject that couples ?uid dynamics to the geometry of spacetime through the Einstein equations. The subject has seen a resurgence of interest recently, partlybecauseofthespectacularsatellitedatathatcontinuestoshednewlight on the nature of the universe. . . Einstein's theory of gravity is still the basic theorywehavetodescribetheexpandinguniverseofgalaxies. ButtheEinstein equations are of great physical, mathematical and intellectual interest in their own right. They are the granddaddy of all modern ?eld equations, being the ?rst to describe a ?eld by curvature, an idea that has impacted all of physics, and that revolutionized the modern theory of elementary particles. In these noteswedescribeamathematicaltheoryofshockwavepropagationingeneral relativity. Shock waves are strong fronts that propagate in ?uids, and across which there is a rapid change in density, pressure and velocity, and they can bedescribedmathematicallybydiscontinuitiesacrosswhichmass,momentum and energy are conserved. In general relativity, shock waves carry with them a discontinuity in spacetime curvature. The main object of these notes is to introduce and analyze a practical method for numerically computing shock waves in spherically symmetric spacetimes. The method is locally inertial in thesensethatthecurvatureissetequaltozeroineachlocalgridcell. Although it formally appears that the method introduces singularities at shocks, the arguments demonstrate that this is not the case. The third author would like to dedicate these notes to his father, Paul Blake Temple, who piqued the author's interest in Einstein's theory when he was a young boy, and whose interest and encouragement has been an inspirationthroughout his adult life.
on
Desktop
Tablet
Mobile

More in Applied Mathematics

Markov Chains : Theory and Applications - C.R. Rao

eBOOK

RRP $359.04

$323.99

10%
OFF
Pi the Laws of Duality - G. Neal

eBOOK

Grape Explications - Neal D. Hulkower

eBOOK

RRP $18.69

$17.99

Discrete Mathematics - Julian Ting

eBOOK

Mathematics for Engineers - Ritu Shrivastava

eBOOK