Get Free Shipping on orders over $79
Semigroups in Geometrical Function Theory - D. Shoikhet

Semigroups in Geometrical Function Theory

By: D. Shoikhet

eText | 9 March 2013

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Historically, complex analysis and geometrical function theory have been inten­ sively developed from the beginning of the twentieth century. They provide the foundations for broad areas of mathematics. In the last fifty years the theory of holomorphic mappings on complex spaces has been studied by many mathemati­ cians with many applications to nonlinear analysis, functional analysis, differential equations, classical and quantum mechanics. The laws of dynamics are usually presented as equations of motion which are written in the abstract form of a dy­ namical system: dx / dt f ( x) = 0, where x is a variable describing the state of the system under study, and f is a vector function of x. The study of such systems when f is a monotone or an accretive (generally nonlinear) operator on the under­ lying space has been recently the subject of much research by analysts working on quite a variety of interesting topics, including boundary value problems, integral equations and evolution problems (see, for example, [19, 13] and [29]). In a parallel development (and even earlier) the generation theory of one­ parameter semigroups of holomorphic mappings in en has been the topic of interest in the theory of Markov stochastic processes and, in particular, in the theory of branching processes (see, for example, [63, 127, 48] and [69]).
on
Desktop
Tablet
Mobile

More in Calculus & Mathematical Analysis

AI Breaking Boundaries - Avinash Vanam

eBOOK