Get Free Shipping on orders over $79
Semiconductor-Laser Fundamentals : Physics of the Gain Materials - Weng W. Chow

Semiconductor-Laser Fundamentals

Physics of the Gain Materials

By: Weng W. Chow, Stephan W. Koch

eText | 9 March 2013

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Since Fall of 1993, when we completed the manuscript of our book "Semi­ conductor-Laser Physics" [W.W. Chow, S.W. Koch, and M. Sargent III (Springer, Berlin, Heidelberg, 1994)] many new and exciting developments have taken place in the world of semiconductor lasers. Novel laser and ampli­ fier structures were developed, and others, for example, the VCSEL (vertical cavity surface emitting laser) and monolithic MOPA (master oscillator power amplifier), made the transition from research and development to production. When investigating some of these systems, we discovered instances when de­ vice performance, and thus design depend critically on details of the gain medium properties, e.g., spectral shape and carrier density dependence of the gain and refractive index. New material systems were also introduced, with optical emission wave­ lengths spanning from the mid-infrared to the ultraviolet. Particularly note­ worthy are laser and light-emitting diodes based on the wide-bandgap group-III nitride and II~VI compounds. These devices emit in the visible to ultra-violet wavelength range, which is important for the wide variety of optoelectronic applications. While these novel semiconductor-laser materi­ als show many similarities with the more conventional near-infrared systems, they also possess rather different material parameter combinations. These dif­ ferences appear as band structure modifications and as increased importance of Coulomb effects, such that, e.g., excitonic signatures resulting from the at­ tractive electron-hole interaction are generally significantly more prominent in the wide bandgap systems.
on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 1st December 2010

More in Optical Physics

Color In 30 Pages - U.Q. Magnusson

eBOOK

A History of Spectroscopy - Emile Biémont

eTEXT