Get Free Shipping on orders over $79
Search and Classification Using Multiple Autonomous Vehicles : Decision-Making and Sensor Management - Yue Wang

Search and Classification Using Multiple Autonomous Vehicles

Decision-Making and Sensor Management

By: Yue Wang, Islam I. Hussein

eText | 30 March 2012

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Search and Classification Using Multiple Autonomous Vehicles provides a comprehensive study of decision-making strategies for domain search and object classification using multiple autonomous vehicles (MAV) under both deterministic and probabilistic frameworks. It serves as a first discussion of the problem of effective resource allocation using MAV with sensing limitations, i.e., for search and classification missions over large-scale domains, or when there are far more objects to be found and classified than there are autonomous vehicles available. Under such scenarios, search and classification compete for limited sensing resources. This is because search requires vehicle mobility while classification restricts the vehicles to the vicinity of any objects found. The authors develop decision-making strategies to choose between these competing tasks and vehicle-motion-control laws to achieve the proposed management scheme. Deterministic Lyapunov-based, probabilistic Bayesian-based, and risk-based decision-making strategies and sensor-management schemes are created in sequence. Modeling and analysis include rigorous mathematical proofs of the proposed theorems and the practical consideration of limited sensing resources and observation costs. A survey of the well-developed coverage control problem is also provided as a foundation of search algorithms within the overall decision-making strategies. Applications in both underwater sampling and space-situational awareness are investigated in detail. The control strategies proposed in each chapter are followed by illustrative simulation results and analysis. Academic researchers and graduate students from aerospace, robotics, mechanical or electrical engineering backgrounds interested in multi-agent coordination and control, in detection and estimation or in Bayes filtration will find this text of interest.
on
Desktop
Tablet
Mobile

More in Cybernetics & Systems Theory

Life is a wave function - Abhay Kulkarni

eBOOK

The Science of Happy - King Poet

eBOOK

The Unity of Forces - manoranjan ghoshal

eBOOK

AI The Gift of a Lifetime - Loïc Molla

eBOOK