Get Free Shipping on orders over $79
Reinforcement Learning for Optimal Feedback Control : A Lyapunov-Based Approach - Rushikesh Kamalapurkar

Reinforcement Learning for Optimal Feedback Control

A Lyapunov-Based Approach

By: Rushikesh Kamalapurkar, Patrick Walters, Joel Rosenfeld, Warren Dixon

eText | 10 May 2018

At a Glance

eText


$249.00

or 4 interest-free payments of $62.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book's focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution.

To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor-critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements.

This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.

on
Desktop
Tablet
Mobile

More in Cybernetics & Systems Theory

The Science of Happy - King Poet

eBOOK

The Unity of Forces - manoranjan ghoshal

eBOOK

AI The Gift of a Lifetime - Loïc Molla

eBOOK

Life is a wave function - Abhay Kulkarni

eBOOK

The Best fit Theory - Pankaj

eBOOK

Ultimate Mind theory - david gindis

eBOOK

The Learning Universe - Azhar Feili

eBOOK