Get Free Shipping on orders over $79
Reflection Positivity : A Representation Theoretic Perspective - Karl-Hermann Neeb

Reflection Positivity

A Representation Theoretic Perspective

By: Karl-Hermann Neeb, Gestur Ólafsson

eText | 28 June 2018

At a Glance

eText


$89.99

or 4 interest-free payments of $22.50 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Refection Positivity is a central theme at the crossroads of Lie group representations, euclidean and abstract harmonic analysis, constructive quantum field theory, and stochastic processes.

This book provides the first presentation of the representation theoretic aspects of Refection Positivity and discusses its connections to those different fields on a level suitable for doctoral students and researchers in related fields.

It starts with a general introduction to the ideas and methods involving refection positive Hilbert spaces and the Osterwalder--Schrader transform. It then turns to Reflection Positivity in Lie group representations. Already the case of one-dimensional groups is extremely rich.

For the real line it connects naturally with Lax--Phillips scattering theory and for the circle group it provides a new perspective on the Kubo--Martin--Schwinger (KMS) condition for states of operator algebras.

For Lie groups Reflection Positivity connectsunitary representations of a symmetric Lie group with unitary representations of its Cartan dual Lie group.

A typical example is the duality between the Euclidean group E(n) and the Poincare group P(n) of special relativity. It discusses in particular the curved context of the duality between spheres and hyperbolic spaces. Further it presents some new integration techniques for representations of Lie algebras by unbounded operators which are needed for the passage to the dual group. Positive definite functions, kernels and distributions and used throughout as a central tool.

on
Desktop
Tablet
Mobile

More in Groups & Group Theory

Urban Growth : An Approach - Brian T. Robson

eTEXT

Handbook of Algebra : Handbook of Algebra : Book 4 - M. Hazewinkel

eBOOK