Get Free Shipping on orders over $79
Reduction of Nonlinear Control Systems : A Differential Geometric Approach - V. I. Elkin

Reduction of Nonlinear Control Systems

A Differential Geometric Approach

By: V. I. Elkin

eText | 6 December 2012

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Advances in science and technology necessitate the use of increasingly-complicated dynamic control processes. Undoubtedly, sophisticated mathematical models are also concurrently elaborated for these processes. In particular, linear dynamic control systems iJ = Ay Bu, y E M C ]Rn, U E ]RT, (1) where A and B are constants, are often abandoned in favor of nonlinear dynamic control systems (2) which, in addition, contain a large number of equations. The solution of problems for multidimensional nonlinear control systems en­ counters serious difficulties, which are both mathematical and technical in nature. Therefore it is imperative to develop methods of reduction of nonlinear systems to a simpler form, for example, decomposition into systems of lesser dimension. Approaches to reduction are diverse, in particular, techniques based on approxi­ mation methods. In this monograph, we elaborate the most natural and obvious (in our opinion) approach, which is essentially inherent in any theory of math­ ematical entities, for instance, in the theory of linear spaces, theory of groups, etc. Reduction in our interpretation is based on assigning to the initial object an isomorphic object, a quotient object, and a subobject. In the theory of linear spaces, for instance, reduction consists in reducing to an isomorphic linear space, quotient space, and subspace. Strictly speaking, the exposition of any mathemat­ ical theory essentially begins with the introduction of these reduced objects and determination of their basic properties in relation to the initial object.
on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 3rd August 2012

More in Cybernetics & Systems Theory

Life is a wave function - Abhay Kulkarni

eBOOK

The Science of Happy - King Poet

eBOOK

The Unity of Forces - manoranjan ghoshal

eBOOK

AI The Gift of a Lifetime - Loïc Molla

eBOOK

The Learning Universe - Azhar Feili

eBOOK

The Best fit Theory - Pankaj

eBOOK