Get Free Shipping on orders over $79
Parameter Advising for Multiple Sequence Alignment : Computer Science (R0) - Dan DeBlasio

Parameter Advising for Multiple Sequence Alignment

By: Dan DeBlasio, John Kececioglu

eText | 4 January 2018

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book develops a new approach called parameter advising for finding a parameter setting for a sequence aligner that yields a quality alignment of a given set of input sequences. In this framework, a parameter advisor is a procedure that automatically chooses a parameter setting for the input, and has two main ingredients:

(a) the set of parameter choices considered by the advisor, and

(b) an estimator of alignment accuracy used to rank alignments produced by the aligner.

On coupling a parameter advisor with an aligner, once the advisor is trained in a learning phase, the user simply inputs sequences to align, and receives an output alignment from the aligner, where the advisor has automatically selected the parameter setting.

The chapters first lay out the foundations of parameter advising, and then cover applications and extensions of advising. The content

• examines formulations of parameter advising and their computational complexity,

• develops methods for learning good accuracy estimators,

• presents approximation algorithms for finding good sets of parameter choices, and

• assesses software implementations of advising that perform well on real biological data.

Also explored are applications of parameter advising to

adaptive local realignment, where advising is performed on local regions of the sequences to automatically adapt to varying mutation rates, and

ensemble alignment, where advising is applied to an ensemble of aligners to effectively yield a new aligner of higher quality than the individual aligners in the ensemble.

The book concludes by offering future directions in advising research.

on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 6th June 2019

More in Algorithms & Data Structures

Addiction by Design : Machine Gambling in Las Vegas - Natasha Dow Schüll

eBOOK