Get Free Shipping on orders over $79
Pandas for Everyone : Python Data Analysis - Daniel Y. Chen

Pandas for Everyone

Python Data Analysis

By: Daniel Y. Chen

eText | 15 December 2017 | Edition Number 1

At a Glance

eText


$47.95

or 4 interest-free payments of $11.99 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python

 

Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.

 

Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you're new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems.

 

Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes.

 

Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. 

  • Work with DataFrames and Series, and import or export data
  • Create plots with matplotlib, seaborn, and pandas
  • Combine datasets and handle missing data
  • Reshape, tidy, and clean datasets so they're easier to work with
  • Convert data types and manipulate text strings
  • Apply functions to scale data manipulations
  • Aggregate, transform, and filter large datasets with groupby
  • Leverage Pandas' advanced date and time capabilities
  • Fit linear models using statsmodels and scikit-learn libraries
  • Use generalized linear modeling to fit models with different response variables
  • Compare multiple models to select the "best"
  • Regularize to overcome overfitting and improve performance
  • Use clustering in unsupervised machine learning


on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 17th February 2023

More in Data Mining

Investing for Programmers - Stefan Papp

eBOOK

Conquering the Decision Abyss - Keith Hartley

eBOOK

RRP $15.39

$14.99

Big Data Analytics - Nitin Kumar Yadav

eBOOK

Data Engineering for Data-Driven Marketing - Balamurugan Baluswamy

eBOOK

RRP $185.82

$157.99

15%
OFF