Get Free Shipping on orders over $79
Oversampled Delta-Sigma Modulators : Analysis, Applications and Novel Topologies - Mücahit Kozak

Oversampled Delta-Sigma Modulators

Analysis, Applications and Novel Topologies

By: Mücahit Kozak, Izzet Kale

eText | 8 May 2007

At a Glance

eText


$179.00

or 4 interest-free payments of $44.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
The analysis of the quantization noise in delta-sigma modulators is not a trivial task. State-of-the-art analysis methods include modelling the quantization noise as a uniform distributed white noise. However, it is not uncommon to observe limit cycle oscillations and tones at the output of a delta-sigma modulator. In most of the applications, these limit cycles and tones are strictly objectionable. Such an application, for instance, is a Fractional-N PLL frequency synthesizer, where idle tones and limit cycles generated from the delta-sigma modulator directly appear in the synthesized RF waveform as spurious components. The relatively small conversion bandwidth is another important limitation of delta-sigma modulators. Due to their oversampling nature, delta-sigma modulators have been used in low frequency applications. Oversampled Delta-Sigma Modulators: Analysis, Applications, and Novel Topologies presents theorems and their mathematical proofs for the exact analysis of the quantization noise in delta-sigma modulators. Extensive mathematical equations are included throughout the book to analyze both single-stage and multi-stage architectures. It has been proved that appropriately set initial conditions generate tone free output, provided that the modulator order is at least three. These results are applied to the design of a Fractional-N PLL frequency synthesizer to produce spurious free RF waveforms. Furthermore, the book also presents time-interleaved topologies to increase the conversion bandwidth of delta-sigma modulators. The topologies have been generalized for any interleaving number and modulator order. Oversampled Delta-Sigma Modulators: Analysis, Applications, and Novel Topologies is full of design and analysis techniques. The book contains sufficient detail that enables readers with little background in the subject to easily follow the material in it. Oversampled Delta-Sigma Modulators: Analysis, Applications, and Novel Topologies will be of interest to graduate students, researchers, and practising circuit designers in the areas of delta-sigma based data converters and Fractional-N PLL frequency synthesizer design.
on
Desktop
Tablet
Mobile

More in Circuits & Components