Get Free Shipping on orders over $79
Optimization - Kenneth Lange

Optimization

By: Kenneth Lange

eText | 9 March 2013

At a Glance

eText


$119.00

or 4 interest-free payments of $29.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students' skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on convexity serves as bridge between linear and nonlinear programming and makes it possible to give a modern exposition of linear programming based on the interior point method rather than the simplex method. The emphasis on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes graduate students in applied mathematics, computational biology, computer science, economics, and physics as well as upper division undergraduate majors in mathematics who want to see rigorous mathematics combined with real applications. Chapter 1 reviews classical methods for the exact solution of optimization problems. Chapters 2 and 3 summarize relevant concepts from mathematical analysis. Chapter 4 presents the Karush-Kuhn-Tucker conditions for optimal points in constrained nonlinear programming. Chapter 5 discusses convexity and its implications in optimization. Chapters 6 and 7 introduce the MM and the EM algorithms widely used in statistics. Chapters 8 and 9 discuss Newton's method and its offshoots, quasi-Newton algorithms and the method of conjugate gradients. Chapter 10 summarizes convergence results, and Chapter 11 briefly surveys convex programming, duality, and Dykstra's algorithm. From the reviews: "...An excellent, imaginative, and authoritative text on the difficult topic of modeling the problems of multivariate outcomes with different scaling levels, different units of analysis, and differentstudy designs simultaneously." Biometrics, March 2005 "...As a textbook, Optimization does provide a valuable introduction to an important branch of applicable mathematics." Technometrics, August 2005 "...I found Optimization to be an extremely engaging textbook....the text is ideal for graduate students or researchers beginning research on optimization problems in statistics. There is little doubt that someone who worked through the text as part of a reading course or specialized graduate seminar would benefit greatly from the author's perspective..." Journal of the American Statistical Association, December 2005
on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 3rd April 2015

More in Probability & Statistics

untitled - TBC ANZ

eBOOK

$31.99

An Introduction to Stochastic Modeling - Gabriel Lord

eBOOK

RRP $145.41

$130.99

10%
OFF