Get Free Shipping on orders over $79
Optimal Domain and Integral Extension of Operators : Acting in Function Spaces - S. Okada

Optimal Domain and Integral Extension of Operators

Acting in Function Spaces

By: S. Okada, Werner J. Ricker, Enrique A. Sánchez Pérez

eText | 9 September 2008

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Operator theory and functional analysis have a long tradition, initially being guided by problems from mathematical physics and applied mathematics. Much of the work in Banach spaces from the 1930s onwards resulted from investigating how much real (and complex) variable function theory might be extended to fu- tions taking values in (function) spaces or operators acting in them. Many of the ?rst ideas in geometry, basis theory and the isomorphic theory of Banach spaces have vector measure-theoretic origins and can be credited (amongst others) to N. Dunford, I.M. Gelfand, B.J. Pettis and R.S. Phillips. Somewhat later came the penetratingcontributionsofA.Grothendieck,whichhavepervadedandin?uenced theshapeoffunctionalanalysisandthetheoryofvectormeasures/integrationever since. Today, each of the areas of functional analysis/operator theory, Banach spaces, and vector measures/integration is a strong discipline in its own right. However, it is not always made clear that these areas grew up together as cousins and that they had, and still have, enormous in?uences on one another. One of the aims of this monograph is to reinforce and make transparent precisely this important point.
on
Desktop
Tablet
Mobile

More in Calculus & Mathematical Analysis

AI Breaking Boundaries - Avinash Vanam

eBOOK

Enriques Surfaces I - François Cossec

eTEXT

The Monodromy Group - Henryk ?o??dek

eTEXT