Get Free Shipping on orders over $79
Optimal Control - Leonid T. Ashchepkov

Optimal Control

By: Leonid T. Ashchepkov, Dmitriy V. Dolgy, Taekyun Kim, Ravi P. Agarwal

eText | 12 January 2022 | Edition Number 2

At a Glance

eText


$119.00

or 4 interest-free payments of $29.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This textbook, now in its second edition, results from lectures, practical problems, and workshops on Optimal Control, given by the authors at Irkutsk State University, Far Eastern Federal University (both in Vladivostok, Russia), and Kwangwoon University (Seoul, South Korea).

In this work, the authors cover the theory of linear and nonlinear systems, touching on the basic problem of establishing the necessary and sufficient conditions of optimal processes. Readers will find two new chapters, with results of potential interest to researchers with a focus on the theory of optimal control, as well as to those interested in applications in Engineering and related sciences. In addition, several improvements have been made through the text.

This book is structured in three parts. Part I starts with a gentle introduction to the basic concepts in Optimal Control. In Part II, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of reachability set in the class of piecewise continuous controls and touch on the problems of controllability, observability, identification, performance, and terminal control. Part III, in its turn, is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for problems with mobile ends of trajectories.

Problem sets at the end of chapters and a list of additional tasks, provided in the appendix, are offered for students seeking to master the subject. The exercises have been chosen not only as a way to assimilate the theory but also as to induct the application of such knowledge in more advanced problems.

on
Desktop
Tablet
Mobile

More in Cybernetics & Systems Theory

Life is a wave function - Abhay Kulkarni

eBOOK

The Science of Happy - King Poet

eBOOK

AI The Gift of a Lifetime - Loïc Molla

eBOOK

The Unity of Forces - manoranjan ghoshal

eBOOK

The Learning Universe - Azhar Feili

eBOOK

The Best fit Theory - Pankaj

eBOOK