Get Free Shipping on orders over $79
Numerical Python : Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib - Robert Johansson

Numerical Python

Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

By: Robert Johansson

eText | 27 September 2024 | Edition Number 3

At a Glance

eText


$54.99

or 4 interest-free payments of $13.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.

Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis.

After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.

What You'll Learn

  • Work with vectors and matrices using NumPy
  • Review Symbolic computing with SymPy
  • Plot and visualize data with Matplotlib
  • Perform data analysis tasks with Pandas and SciPy
  • Understand statistical modeling and machine learning with statsmodels and scikit-learn
  • Optimize Python code using Numba and Cython

Who This Book Is For

Developers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis.

on
Desktop
Tablet
Mobile

More in Artificial Intelligence

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK

AI-Powered Search - Trey Grainger

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK