Get Free Shipping on orders over $79
Numerical Methods for Stochastic Control Problems in Continuous Time - Harold Kushner

Numerical Methods for Stochastic Control Problems in Continuous Time

By: Harold Kushner, Paul G. Dupuis

eText | 27 November 2013 | Edition Number 2

At a Glance

eText


$139.00

or 4 interest-free payments of $34.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Changes in the second edition. The second edition differs from the first in that there is a full development of problems where the variance of the diffusion term and the jump distribution can be controlled. Also, a great deal of new material concerning deterministic problems has been added, including very efficient algorithms for a class of problems of wide current interest. This book is concerned with numerical methods for stochastic control and optimal stochastic control problems. The random process models of the controlled or uncontrolled stochastic systems are either diffusions or jump diffusions. Stochastic control is a very active area of research and new problem formulations and sometimes surprising applications appear regu­ larly. We have chosen forms of the models which cover the great bulk of the formulations of the continuous time stochastic control problems which have appeared to date. The standard formats are covered, but much emphasis is given to the newer and less well known formulations. The controlled process might be either stopped or absorbed on leaving a constraint set or upon first hitting a target set, or it might be reflected or "projected" from the boundary of a constraining set. In some of the more recent applications of the reflecting boundary problem, for example the so-called heavy traffic approximation problems, the directions of reflection are actually discontin­ uous. In general, the control might be representable as a bounded function or it might be of the so-called impulsive or singular control types.
on
Desktop
Tablet
Mobile

More in Probability & Statistics

Bayesian Entrepreneurship - Ajay Agrawal

eBOOK

RRP $203.33

$162.99

20%
OFF