Get Free Shipping on orders over $79
Numerical Bifurcation Analysis for Reaction-Diffusion Equations - Zhen Mei

Numerical Bifurcation Analysis for Reaction-Diffusion Equations

By: Zhen Mei

eText | 9 March 2013

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Reaction-diffusion equations are typical mathematical models in biology, chemistry and physics. These equations often depend on various parame­ ters, e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ­ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor­ respondingly we see formation of patterns in the system, for example, an onset of convection and waves in the chemical reactions. This kind of phe­ nomena is called bifurcation. Nonlinearity in the system makes bifurcation take place constantly in reaction-diffusion processes. Bifurcation in turn in­ duces uncertainty in outcome of reactions. Thus analyzing bifurcations is essential for understanding mechanism of pattern formation and nonlinear dynamics of a reaction-diffusion process. However, an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu­ merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations and mode interactions of a dass of reaction-diffusion equations. This is realized with a combination of three mathematical approaches: numerical methods for con­ tinuation of solution curves and for detection and computation of bifurcation points; effective low dimensional modeling of bifurcation scenario and long time dynamics of reaction-diffusion equations; analysis of bifurcation sce­ nario, mode-interactions and impact of boundary conditions.
on
Desktop
Tablet
Mobile

More in Calculus & Mathematical Analysis

AI Breaking Boundaries - Avinash Vanam

eBOOK

Enriques Surfaces I - François Cossec

eTEXT

The Monodromy Group - Henryk ?o??dek

eTEXT