Get Free Shipping on orders over $79
Nonlinear Partial Differential Equations : Asymptotic Behavior of Solutions and Self-Similar Solutions - Mi-Ho Giga

Nonlinear Partial Differential Equations

Asymptotic Behavior of Solutions and Self-Similar Solutions

By: Mi-Ho Giga, Yoshikazu Giga, Jürgen Saal

eText | 30 May 2010

At a Glance

eText


$139.00

or 4 interest-free payments of $34.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
The purpose of this book is to present typical methods (including rescaling methods) for the examination of the behavior of solutions of nonlinear partial di?erential equations of di?usion type. For instance, we examine such eq- tions by analyzing special so-called self-similar solutions. We are in particular interested in equations describing various phenomena such as the Navier- Stokesequations.Therescalingmethod describedherecanalsobeinterpreted as a renormalization group method, which represents a strong tool in the asymptotic analysis of solutions of nonlinear partial di?erential equations. Although such asymptotic analysis is used formally in various disciplines, not seldom there is a lack of a rigorous mathematical treatment. The intention of this monograph is to ?ll this gap. We intend to develop a rigorous mat- matical foundation of such a formalasymptotic analysis related to self-similar solutions. A self-similar solution is, roughly speaking, a solution invariant under a scaling transformationthat does not change the equation. For several typical equations we shall give mathematical proofs that certain self-similar solutions asymptotically approximate the typical behavior of a wide class of solutions. Since nonlinear partial di?erential equations are used not only in mat- matics but also in various ?elds of science and technology, there is a huge variety of approaches. Moreover,even the attempt to cover only a few typical ?elds and methods requires many pages of explanations and collateral tools so that the approaches are self-contained and accessible to a large audience.
on
Desktop
Tablet
Mobile

More in Differential Calculus & Equations

The Monodromy Group - Henryk ?o??dek

eTEXT