Get Free Shipping on orders over $79
Network Data Mining and Analysis : East China Normal University Scientific Reports : Book 8 - Ming Gao

Network Data Mining and Analysis

By: Ming Gao, Ee-peng Lim, David Lo

eText | 28 September 2018

At a Glance

eText


$118.80

or 4 interest-free payments of $29.70 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Online social networking sites like Facebook, LinkedIn, and Twitter, offer millions of members the opportunity to befriend one another, send messages to each other, and post content on the site — actions which generate mind-boggling amounts of data every day.

To make sense of the massive data from these sites, we resort to social media mining to answer questions like the following:

  • What are social communities in bipartite graphs and signed graphs?
  • How robust are the networks? How can we apply the robustness of networks?
  • How can we find identical social users across heterogeneous social networks?

Social media shatters the boundaries between the real world and the virtual world. We can now integrate social theories with computational methods to study how individuals interact with each other and how social communities form in bipartite and signed networks. The uniqueness of social media data calls for novel data mining techniques that can effectively handle user generated content with rich social relations. The study and development of these new techniques are under the purview of social media mining, an emerging discipline under the umbrella of data mining. Social Media Mining is the process of representing, analyzing, and extracting actionable patterns from social media data.


Contents:
  • Introduction to Social Networks
  • Network Modeling
  • R-energy for Evaluating Robustness of Dynamic Networks
  • Network Linkage Across Heterogeneous Networks
  • Quasi-biclique Detection from Bipartite Graphs
  • On Detecting Antagonistic Community Detection from Signed Graphs
  • Summary

Readership: Graduate students and researchers seeking more efficient methods to process varying queries in large-scale key-value store networks.
Key Features:
  • We address the following latest and key questions as following:
  • What are social communities in bipartite graphs and signed graphs?
  • How robust the networks are? How to use the robustness of networks?
  • How can we find identical social users across heterogeneous social networks?
on
Desktop
Tablet
Mobile

More in Data Mining

Investing for Programmers - Stefan Papp

eBOOK

Conquering the Decision Abyss - Keith Hartley

eBOOK

RRP $15.39

$14.99

Big Data Analytics - Nitin Kumar Yadav

eBOOK

Data Engineering for Data-Driven Marketing - Balamurugan Baluswamy

eBOOK

RRP $185.82

$157.99

15%
OFF