Get Free Shipping on orders over $79
Multiple Testing Procedures with Applications to Genomics - Sandrine Dudoit

Multiple Testing Procedures with Applications to Genomics

By: Sandrine Dudoit, Mark J. van der Laan

eText | 18 December 2007

At a Glance

eText


$249.00

or 4 interest-free payments of $62.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This book establishes the theoretical foundations of a general methodology for multiple hypothesis testing and discusses its software implementation in R and SAS. The methods are applied to a range of testing problems in biomedical and genomic research, including the identification of differentially expressed and co-expressed genes in high-throughput gene expression experiments, such as microarray experiments; tests of association between gene expression measures and biological annotation metadata (e.g., Gene Ontology); sequence analysis; and the genetic mapping of complex traits using single nucleotide polymorphisms. The book is aimed at both statisticians interested in multiple testing theory and applied scientists encountering high-dimensional testing problems in their subject matter area. Specifically, the book proposes resampling-based single-step and stepwise multiple testing procedures for controlling a broad class of Type I error rates, defined as tail probabilities and expected values for arbitrary functions of the numbers of Type I errors and rejected hypotheses (e.g., false discovery rate). Unlike existing approaches, the procedures are based on a test statistics joint null distribution and provide Type I error control in testing problems involving general data generating distributions (with arbitrary dependence structures among variables), null hypotheses, and test statistics. The multiple testing results are reported in terms of rejection regions, parameter confidence regions, and adjusted p-values.
on
Desktop
Tablet
Mobile

Other Editions and Formats

Hardcover

Published: 2nd May 2012

More in Life Sciences in General