Get Free Shipping on orders over $79
Multiple and Generalized Nonparametric Regression : Quantitative Applications in the Social Sciences - John Fox

Multiple and Generalized Nonparametric Regression

By: John Fox

eText | 1 May 2000 | Edition Number 1

At a Glance

eText


$66.00

or 4 interest-free payments of $16.50 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book builds on John Fox's previous volume in the QASS Series, Non Parametric Simple Regression. In this monograph readers learn to estimate and plot smooth functions when there are multiple independent variables. While regression analysis traces the dependence of the distribution of a response variable to see if it bears a particular (linear) relationship to one or more of the predictors, nonparametric regression analysis makes minimal assumptions about the form of relationship between the average response and the predictors. This makes nonparametric regression a more useful technique for analyzing data in which there are several predictors that may combine additively to influence the response. (An example could be something like birth order/gender/and temperament on achievement motivation).

Unfortunately, researchers have not had accessible information on nonparametric regression analysis, until now. Beginning with presentation of nonparametric regression based on dividing the data into bins and averaging the response values in each bin, Fox introduces readers to the techniques of kernel estimation, additive nonparametric regression, and the ways nonparametric regression can be employed to select transformations of the data preceding a linear least-squares fit. The book concludes with ways nonparametric regression can be generalized to logit, probit, and Poisson regression.

on
Desktop
Tablet
Mobile

More in Social Research & Statistics