Get Free Shipping on orders over $79
Multifunctional Metasurfaces : Design Principles and Device Realizations - He-Xiu Xu

Multifunctional Metasurfaces

Design Principles and Device Realizations

By: He-Xiu Xu, Shiwei Tang, Tong Cai, Shulin Sun, Lei Zhou

eText | 1 June 2022

At a Glance

eText


$89.99

or 4 interest-free payments of $22.50 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
In recent years, we have witnessed a rapid expansion of using super-thin metasurfaces to manipulate light or electromagnetic wave in a subwavelength scale. However, most designs are confined to a passive scheme and monofunctional operation, which hinders considerably the promising applications of the metasurfaces. Specifically, the tunable and multifunctional metasurfaces enable to facilitate switchable functionalities and multiple functionalities which are extremely essential and useful for integrated optics and microwaves, well alleviating aforementioned issues. In this book, we introduce our efforts in exploring the physics principles, design approaches, and numerical and experimental demonstrations on the fascinating functionalities realized. We start by introducing in Chapter 2 the "merging" scheme in constructing multi-functional metadevices, paying particular attention to its shortcomings issues. Having understood the merits and disadvantages of the "merging" scheme, we then introduce in Chapter 3 another approach to realize bifunctional metadevices under linearly polarized excitations, working in both reflection and transmission geometries or even in the full space. As a step further, we summarizes our efforts in Chapter 4 on making multifunctional devices under circularly polarized excitations, again including designing principles and devices fabrications/characterizations. Starting from Chapter 5, we turn to introduce our efforts on using the "active" scheme to construct multifunctional metadevices under linearly polarized wave operation. Chapter 6 further concentrates on how to employ the tunable strategy to achieve helicity/frequency controls of the circularly polarized waves in reflection geometry. We finally conclude this book in Chapter 7 by presenting our perspectives on future directions of metasurfaces and metadevices.
on
Desktop
Tablet
Mobile

More in Optical Physics

Color In 30 Pages - U.Q. Magnusson

eBOOK