Get Free Shipping on orders over $79
Material Modeling in Finite Element Analysis - Zhaochun Yang

Material Modeling in Finite Element Analysis

By: Zhaochun Yang

eBook | 17 October 2019 | Edition Number 1

Sorry, we are not able to source the ebook you are looking for right now.

We did a search for other ebooks with a similar title, however there were no matches. You can try selecting from a similar category, click on the author's name, or use the search box above to find your ebook.

Finite element analysis has been widely applied in mechanical, civil, and biomedical designs. This book aims to provide the readers comprehensive views of various material models with practical examples, which would help readers understand various materials, and build appropriate material models in the finite element analysis.

This book is composed of four main parts: 1) metals, 2) polymers, 3) soils, and 4) modern materials. Each part starts with the structure and function of different materials and then follows the corresponding material models such as BISO, MISO, Chaboche model in metals, Arruda-Boyce model, Mooney-Rivlin model, Ogden model in polymers, Mohr-Coulomb model, Cam Clay model and Jointed Rock model in geomechanics, composites and shape memory alloys in modern materials. The final section presents some specific problems, such as metal forming process, combustion chamber, Mullins effect of rubber tire, breast shape after breast surgery, viscoelasticity of liver soft tissues, tunnel excavation, slope stability, orthodontic wire, and piezoelectric microaccelerometer. All modeling files are provided in the appendixes of the book.

This book would be helpful for graduate students and researchers in the mechanical, civil, and biomedical fields who conduct finite element analysis. The book provides all readers with comprehensive understanding of modeling various materials.

on

More in Physics

A Universe From Nothing - Lawrence M. Krauss

eBOOK

Coming of Age in the Milky Way - Timothy Ferris

eBOOK

RRP $33.99

$27.99

18%
OFF