Get Free Shipping on orders over $79
Mastering Machine Learning with scikit-learn : Use scikit-learn to apply machine learning to real-world problems - Gavin Hackeling

Mastering Machine Learning with scikit-learn

Use scikit-learn to apply machine learning to real-world problems

By: Gavin Hackeling

eText | 24 July 2017 | Edition Number 2

At a Glance

eText


$59.75

or 4 interest-free payments of $14.94 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Use scikit-learn to apply machine learning to real-world problems

About This Book

  • Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks
  • Learn how to build and evaluate performance of efficient models using scikit-learn
  • Practical guide to master your basics and learn from real life applications of machine learning

Who This Book Is For

This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required.

What You Will Learn

  • Review fundamental concepts such as bias and variance
  • Extract features from categorical variables, text, and images
  • Predict the values of continuous variables using linear regression and K Nearest Neighbors
  • Classify documents and images using logistic regression and support vector machines
  • Create ensembles of estimators using bagging and boosting techniques
  • Discover hidden structures in data using K-Means clustering
  • Evaluate the performance of machine learning systems in common tasks

In Detail

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model.

This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance.

By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.

Style and approach

This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and models, then apply your learnings to real-life problems.

on
Desktop
Tablet
Mobile

More in Data Capture & Analysis

China's Megatrends : The 8 Pillars of a New Society - John Naisbitt

eBOOK

AI-Powered Search - Trey Grainger

eBOOK

Transformers in Action - Nicole Koenigstein

eBOOK

Birding with AI : Concepts and Projects for Ornithology - Ronald T. Kneusel

eBOOK

Data Magic - Chris Ategeka

eBOOK

$15.99