Get Free Shipping on orders over $79
Lyotropic Liquid Crystals - Ingo Dierking

Lyotropic Liquid Crystals

By: Ingo Dierking

eText | 12 July 2024 | Edition Number 1

At a Glance

eText


$179.44

or 4 interest-free payments of $44.86 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This book aims to review the field of lyotropic liquid crystals from amphiphilic to colloidal systems, bridging the gap between the two worlds of lyotropics and thermotropics by showing that many of the features observed in standard thermotropic liquid crystals may also be observed in lyotropic systems and vice versa. Indeed, for a long time, lyotropic liquid crystals have been overshadowed by their thermotropic counterparts, mainly due to the potential for application of the latter in the display industry. This picture has somewhat shifted over the last decade, with numerous novel lyotropic systems having been discovered and formulated, bringing to light their importance in wider scientific research. For example, the understanding of viruses forming self-assembled ordered phases has largely increased as mineral liquid crystals and clays have experienced a renaissance leading to fundamental research and work on structure formation in nanotechnology. Similarly, nano-rods, nano-wires, nanotubes and 2D materials like graphene oxide and others have been shown to exhibit liquid crystalline behaviour, which may be exploited in self-assembly, drug delivery or biosensors. Cellulose nanocrystals have become an important and popular field of research. The self-assembly of short chain DNA fragments has led to liquid crystal behaviour previously thought to be impossible. Chromonics were shown to exhibit fascinating physical properties, and the combination of active fluids with liquid crystals has opened a whole new field of research to be explored - 'living liquid crystals'.
on
Desktop
Tablet
Mobile

More in Materials & States of Matter

Physics behind Zulfiqar - Muhammad Mustafa Subhani

eBOOK

A Ripple in Space - Logan Tait

eBOOK

Active Colloids : From Fundamentals to Frontiers - Juliane Simmchen

eBOOK