Get Free Shipping on orders over $79
Landscape of Next Generation Sequencing Using Pattern Recognition : Performance Analysis and Applications - Saurav Mallik

Landscape of Next Generation Sequencing Using Pattern Recognition

Performance Analysis and Applications

By: Saurav Mallik, Loveleen Gaur, Soumita Seth, Tapas Bhadra, Mingqiang Wang

eText | 23 October 2024 | Edition Number 1

At a Glance

eText


$96.79

or 4 interest-free payments of $24.20 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book focuses on an eminent technology called next generation sequencing (NGS) which has entirely changed the procedure of examining organisms and will have a great impact on biomedical research and disease diagnosis. Numerous computational challenges have been brought on by the rapid advancement of large-scale next-generation sequencing (NGS) technologies and their application. The term ""biomedical imaging"" refers to the use of a variety of imaging techniques (such as X-rays, CT scans, MRIs, ultrasounds, etc.) to get images of the interior organs of a human being for potential diagnostic, treatment planning, follow-up, and surgical purposes. In these circumstances, deep learning, a new learning method that uses multi-layered artificial neural networks (ANNs) for unsupervised, supervised, and semi-supervised learning, has attracted a lot of interest for applications to NGS and imaging, even when both of these data are used for the same group of patients.

The three main research phenomena in biomedical research are disease classification, feature dimension reduction, and heterogeneity. AI approaches are used by clinical researchers to efficiently analyse extremely complicated biomedical datasets (e.g., multi-omic datasets. With the use of NGS data and biomedical imaging of various human organs, researchers may predict diseases using a variety of deep learning models. Unparalleled prospects to improve the work of radiologists, clinicians, and biomedical researchers, speed up disease detection and diagnosis, reduce treatment costs, and improve public health are presented by using deep learning models in disease prediction using NGS and biomedical imaging. This book influences a variety of critical disease data and medical images.

on
Desktop
Tablet
Mobile

More in Computer Vision

Advanced Sensors for Smart Healthcare - Tuan Anh Nguyen

eBOOK

RRP $209.94

$188.99

10%
OFF
Cyber Time - Jameson Lyon

eBOOK

$15.99