Get Free Shipping on orders over $79
Kernel Methods for Machine Learning with Math and R : 100 Exercises for Building Logic - Joe Suzuki

Kernel Methods for Machine Learning with Math and R

100 Exercises for Building Logic

By: Joe Suzuki

eText | 4 May 2022

At a Glance

eText


$74.99

or 4 interest-free payments of $18.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs.

The book's main features are as follows:

  • The content is written in an easy-to-follow and self-contained style.
  • The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book.
  • The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels.
  • Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used.
  • Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed.
  • This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.
on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI-Powered Search - Trey Grainger

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK