Get Free Shipping on orders over $79
Iterative Learning Control with Passive Incomplete Information : Algorithms Design and Convergence Analysis - Dong Shen

Iterative Learning Control with Passive Incomplete Information

Algorithms Design and Convergence Analysis

By: Dong Shen

eText | 16 April 2018

At a Glance

eText


$219.00

or 4 interest-free payments of $54.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book presents an in-depth discussion of iterative learning control (ILC) with passive incomplete information, highlighting the incomplete input and output data resulting from practical factors such as data dropout, transmission disorder, communication delay, etc.—a cutting-edge topic in connection with the practical applications of ILC.

It describes in detail three data dropout models: the random sequence model, Bernoulli variable model, and Markov chain model—for both linear and nonlinear stochastic systems. Further, it proposes and analyzes two major compensation algorithms for the incomplete data, namely, the intermittent update algorithm and successive update algorithm. Incomplete information environments include random data dropout, random communication delay, random iteration-varying lengths, and other communication constraints.

With numerous intuitive figures to make the content more accessible, the book explores several potential solutions to this topic, ensuring that readers are not only introduced to the latest advances in ILC for systems with random factors, but also gain an in-depth understanding of the intrinsic relationship between incomplete information environments and essential tracking performance. It is a valuable resource for academics and engineers, as well as graduate students who are interested in learning about control, data-driven control, networked control systems, and related fields.

on
Desktop
Tablet
Mobile

More in Mechanical Engineering

The Railways of Northern England in the 1960s - Michael Clemens

eBOOK

Construction Management Fundamentals, Third Edition - Kraig Knutson

eBOOK