Get Free Shipping on orders over $79
Investigations on Mesoscale Structure in Gas-Solid Fluidization and Heterogeneous Drag Model : Springer Theses - Cheng Chen

Investigations on Mesoscale Structure in Gas-Solid Fluidization and Heterogeneous Drag Model

By: Cheng Chen

eText | 14 October 2015

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book explores the Energy Minimization Multi-scale (EMMS) theory and the drag model for heterogeneous gas-solid fluidized flows. The results show that the cluster density plays a critical role with regard to drag. A novel cluster model is proposed and indicates that the profile of cluster density is single-peaked with the maximum value located at solid concentrations of 0.1~0.15. The EMMS theory is improved with the cluster model and an accurate drag model is developed. The model's universality is achieved by investigating the relationship between the heterogeneity and flow patterns. The drag model is subsequently verified numerically and experimentally.

on
Desktop
Tablet
Mobile

More in Thermodynamics & Heat

Willard Gibbs : The Whole Is Simpler than Its Parts - Muriel Rukeyser

eBOOK

Unified Energy Dynamics - SANDEEP CHAVAN

eBOOK

Molecular Driving Forces, third edition - Ken Dill

eBOOK

RRP $295.61

$236.99

20%
OFF
Entropy and Sustainability - Michael Köhler

eBOOK

Solved Problems in Transport Phenomena : Mass Transfer - ?smail Tosun

eBOOK

Introduction to Radiative Heat Transfer - Michael F. Modest

eBOOK