
Introduction to Electrical Power Systems
eText | 19 November 2008 | Edition Number 1
At a Glance
eText
$257.39
or 4 interest-free payments of $64.35 with
orInstant online reading in your Booktopia eTextbook Library *
Why choose an eTextbook?
Instant Access *
Purchase and read your book immediately
Read Aloud
Listen and follow along as Bookshelf reads to you
Study Tools
Built-in study tools like highlights and more
* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
on
Chapter 1: INTRODUCTION.
1.1 A Brief History of Electric Power Systems.
1.2 The Structure of the Power System.
1.3 Outline of the Text.
Chapter 2: BASICS OF ELECTRIC ENERGY SYSTEM THEORY.
2.1 Introduction.
2.2 Concepts of Power in Alternating Current Systems.
2.3 Three-Phase Systems.
2.4 The Per Unit System.
2.5 Electromagnetism and Electromechanical Energy??Conversion.
2.6 Permeability and Magnetic Field Intensity.
2.7 Flux Linkages, Induced Voltages, Inductance, and Energy.
2.8 Hysteresis Loop.
2.9 Eddy Current and Core Losses.
2.10 Energy Flow Approach.
2.11 Multiply Excited Systems.
2.12 Doubly Excited Systems.
2.13 Salient-Pole Machines.
2.14 Round or Smooth Air-Gap Machines.
2.15 Machine-Type Classification.
2.16 P-Pole Machines.
2.17 Power System Representation.
Problems.
Chapter 3: POWER GENERATION AND THE SYNCHRONOUS MACHINE.
3.1 Introduction.
3.2 The Synchronous Machine: Preliminaries.
3.3 Synchronous Machine Fields.
3.4 A Simple Equivalent Circuit.
3.5 Principal Steady-State Characteristics.
3.6 Power-Angle Characteristics and the Infinite Bus Concept.
3.7 Accounting for Saliency.
3.8 Salient-Pole Machine Power Angle Characteristics.
Problems.
Chapter 4: THE TRANSFORMER.
4.1 Introduction.
4.2 General Theory of Transformer Operation.
4.3 Transformer Connections.
Problems.
Chapter 5: ELECTRIC POWER TRANSMISSION.
5.1 Introduction.
5.2 Electric Transmission Line Parameters.
5.3 Line Inductance.
5.4 Line Capacitance.
5.5 Two-Port Networks.
5.6 Transmission Line Models.
Problems.
Chapter 6: INDUCTION AND FRACTIONAL HORSEPOWER MOTORS.
6.1 Introduction.
6.2 Three-Phase Induction Motors.
6.3 Torque Relations.
6.4 Classification of Induction Motors.
6.5 Rotating Magnetic Fields in Single-Phase Induction Motors.
6.6 Equivalent Circuits for Single-Phase Induction Motors.
6.7 Power and Torque Relations.
6.8 Starting Single-Phase Induction Motors.
6.9 Single-Phase Induction Motor Types.
Problems.
Chapter 7: FAULTS AND PROTECTION OF ELECTRIC ENERGY SYSTEMS.
7.1 Introduction.
7.2 Transients during a Balanced Fault.
7.3 The Method of Symmetrical Components.
7.4 Sequence Networks.
7.5 Line-to-Ground Fault.
7.6 Double Line-to-Ground Fault.
7.7 Line-to-Line Fault.
7.8 The Balanced Three-Phase Fault.
7.9 System Protection, An Introduction.
7.10 Protective Relays.
7.11 Transformer Protection.
7.12 Transmission Line Protection.
7.13 Impedance-Based Protection Principles.
7.14 Computer Relaying.
Problems.
Chapter 8: THE ENERGY CONTROL CENTER.
8.1 Introduction
8.2 Overview of EMS Functions.
8.3 Power Flow Control
8.4 Power Flow
8.5 Stability Considerations
8.6 Power System State Estimation
8.7 Power System Security
8.8 Contingency Analysis
8.9 Optimal Preventive and Corrective Actions
8.10 Dynamic Security Analysis
Chapter 9: THE PRESENT AND FUTURE OF ELECTRIC ENERGY SYSTEMS.
9.1 Introduction.
9.2 Challenges Facing the System.
9.3 Blackouts and their Impact.
9.4 Mitigating and Coping.
REFERENCES.
INDEX.
ISBN: 9780470411360
ISBN-10: 0470411368
Published: 19th November 2008
Format: PDF
Language: English
Publisher: Wiley Professional Development (P&T)
Edition Number: 1
























