Get Free Shipping on orders over $79
Hyperparameter Optimization in Machine Learning : Make Your Machine Learning and Deep Learning Models More Efficient - Tanay Agrawal

Hyperparameter Optimization in Machine Learning

Make Your Machine Learning and Deep Learning Models More Efficient

By: Tanay Agrawal

eText | 28 November 2020

At a Glance

eText


$89.99

or 4 interest-free payments of $22.50 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.

This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.

The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.

Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.

Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.

What You Will Learn

  • Discover how changes in hyperparameters affect the model's performance.
  • Apply different hyperparameter tuning algorithms to data science problems
  • Work with Bayesian optimization methods to create efficient machine learning and deep learning models
  • Distribute hyperparameter optimization using a cluster of machines
  • Approach automated machine learning using hyperparameter optimization

Who This Book Is For

Professionals and students working with machine learning.

on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI : The End of Human Race - Alex Wood

eBOOK

AI-Powered Search - Trey Grainger

eBOOK