Get Free Shipping on orders over $79
Human-Robot Interaction Control Using Reinforcement Learning : IEEE Press Series on Systems Science and Engineering - Wen Yu

Human-Robot Interaction Control Using Reinforcement Learning

By: Wen Yu, Adolfo Perrusquia

eText | 6 October 2021 | Edition Number 1

At a Glance

eText


$221.09

or 4 interest-free payments of $55.27 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

A comprehensive exploration of the control schemes of human-robot interactions

In Human-Robot Interaction Control Using Reinforcement Learning, an expert team of authors delivers a concise overview of human-robot interaction control schemes and insightful presentations of novel, model-free and reinforcement learning controllers. The book begins with a brief introduction to state-of-the-art human-robot interaction control and reinforcement learning before moving on to describe the typical environment model. The authors also describe some of the most famous identification techniques for parameter estimation.

Human-Robot Interaction Control Using Reinforcement Learning offers rigorous mathematical treatments and demonstrations that facilitate the understanding of control schemes and algorithms. It also describes stability and convergence analysis of human-robot interaction control and reinforcement learning based control.

The authors also discuss advanced and cutting-edge topics, like inverse and velocity kinematics solutions, H2 neural control, and likely upcoming developments in the field of robotics.

Readers will also enjoy:

  • A thorough introduction to model-based human-robot interaction control
  • Comprehensive explorations of model-free human-robot interaction control and human-in-the-loop control using Euler angles
  • Practical discussions of reinforcement learning for robot position and force control, as well as continuous time reinforcement learning for robot force control
  • In-depth examinations of robot control in worst-case uncertainty using reinforcement learning and the control of redundant robots using multi-agent reinforcement learning

Perfect for senior undergraduate and graduate students, academic researchers, and industrial practitioners studying and working in the fields of robotics, learning control systems, neural networks, and computational intelligence, Human-Robot Interaction Control Using Reinforcement Learning is also an indispensable resource for students and professionals studying reinforcement learning.

on
Desktop
Tablet
Mobile

More in Robotics

Smarter You With AI - Dr. Gurudas Bandyopadhyay

eBOOK