Get Free Shipping on orders over $79
Homogeneous Spaces and Equivariant Embeddings - D. A. Timashev

Homogeneous Spaces and Equivariant Embeddings

By: D. A. Timashev

eText | 6 April 2011

At a Glance

eText


$219.00

or 4 interest-free payments of $54.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of 'combinatorial' nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.
on
Desktop
Tablet
Mobile

More in Algebraic Geometry

Enriques Surfaces I - François Cossec

eTEXT

Enriques Surfaces II - Igor Dolgachev

eTEXT

The Gross-Zagier Formula on Shimura Curves : (AMS-184) - Xinyi Yuan

eBOOK

Geometry For Dummies - Mark Ryan

eTEXT

Parallel Robots - J. P. Merlet

eTEXT

$269.01

The Heart of Cohomology - Goro Kato

eTEXT