Get Free Shipping on orders over $79
Holomorphic Function Theory in Several Variables : An Introduction - Christine Laurent-Thiébaut

Holomorphic Function Theory in Several Variables

An Introduction

By: Christine Laurent-Thiébaut

eText | 9 September 2010

At a Glance

eText


$89.00

or 4 interest-free payments of $22.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This book provides an introduction to complex analysis in several variables. The viewpoint of integral representation theory together with Grauert's bumping method offers a natural extension of single variable techniques to several variables analysis and leads rapidly to important global results. Applications focus on global extension problems for CR functions, such as the Hartogs-Bochner phenomenon and removable singularities for CR functions. Three appendices on differential manifolds, sheaf theory and functional analysis make the book self-contained. Each chapter begins with a detailed abstract, clearly demonstrating the structure and relations of following chapters. New concepts are clearly defined and theorems and propositions are proved in detail. Historical notes are also provided at the end of each chapter. Clear and succinct, this book will appeal to post-graduate students, young researchers seeking an introduction to holomorphic function theory in several variables and lecturers seeking a concise book on the subject.
on
Desktop
Tablet
Mobile

More in Calculus & Mathematical Analysis

AI Breaking Boundaries - Avinash Vanam

eBOOK

The Monodromy Group - Henryk ?o??dek

eTEXT

Enriques Surfaces I - François Cossec

eTEXT