Get Free Shipping on orders over $79
High-Order Methods for Computational Physics - Timothy J. Barth

High-Order Methods for Computational Physics

By: Timothy J. Barth, ?Herman Deconinck

eText | 9 March 2013 | Edition Number 1

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal­ lenges facing the field of computational fluid dynamics. In structural me­ chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com­ putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac­ curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug­ gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen­ ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.
on
Desktop
Tablet
Mobile

More in Physics

Coming of Age in the Milky Way - Timothy Ferris

eBOOK

RRP $33.99

$27.99

18%
OFF
Gravity's Chain - Alan Goodwin

eBOOK

$8.99

Science is Golden - Karl Kruszelnicki

eBOOK

Mars : A Survival Guide - Guy Murphy

eBOOK