Get Free Shipping on orders over $79
High-Dimensional Probability : An Introduction with Applications in Data Science - Roman Vershynin

High-Dimensional Probability

An Introduction with Applications in Data Science

By: Roman Vershynin

eBook | 30 September 2018

At a Glance

eBook


RRP $113.95

$96.99

15%OFF

or 4 interest-free payments of $24.25 with

 or 

Instant Digital Delivery to your Kobo Reader App

High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression.

on

More in Probability & Statistics

Mathematics in Biology - Markus Meister

eBOOK

RRP $194.25

$155.99

20%
OFF
R for Non-Programmers - Daniel Dauber

eBOOK

untitled - TBC ANZ

eBOOK

$31.99

Statistics by Simulation : A Synthetic Data Approach - Carsten F. Dormann

eBOOK