Get Free Shipping on orders over $79
Hierarchical Optimization and Mathematical Physics - Vladimir Tsurkov

Hierarchical Optimization and Mathematical Physics

By: Vladimir Tsurkov

eText | 21 November 2013

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This book should be considered as an introduction to a special dass of hierarchical systems of optimal control, where subsystems are described by partial differential equations of various types. Optimization is carried out by means of a two-level scheme, where the center optimizes coordination for the upper level and subsystems find the optimal solutions for independent local problems. The main algorithm is a method of iterative aggregation. The coordinator solves the problern with macrovariables, whose number is less than the number of initial variables. This problern is often very simple. On the lower level, we have the usual optimal control problems of math­ ematical physics, which are far simpler than the initial statements. Thus, the decomposition (or reduction to problems ofless dimensions) is obtained. The algorithm constructs a sequence of so-called disaggregated solutions that are feasible for the main problern and converge to its optimal solutionunder certain assumptions ( e.g., under strict convexity of the input functions). Thus, we bridge the gap between two disciplines: optimization theory of large-scale systems and mathematical physics. The first motivation was a special model of branch planning, where the final product obeys a preset assortment relation. The ratio coefficient is maximized. Constraints are given in the form of linear inequalities with block diagonal structure of the part of a matrix that corresponds to subsystems. The central coordinator assem­ bles the final production from the components produced by the subsystems.
on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 15th November 2013

More in Cybernetics & Systems Theory

The Science of Happy - King Poet

eBOOK

The Unity of Forces - manoranjan ghoshal

eBOOK

AI The Gift of a Lifetime - Loïc Molla

eBOOK

Life is a wave function - Abhay Kulkarni

eBOOK

The Learning Universe - Azhar Feili

eBOOK

The Best fit Theory - Pankaj

eBOOK