Get Free Shipping on orders over $79
Geodesic Convexity in Graphs : SpringerBriefs in Mathematics - Ignacio M. Pelayo

Geodesic Convexity in Graphs

By: Ignacio M. Pelayo

eText | 6 September 2013

At a Glance

eText


$89.99

or 4 interest-free payments of $22.50 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
????????Geodesic Convexity in Graphs is devoted to the study of the geodesic convexity on finite, simple, connected graphs. The first chapter includes the main definitions and results on graph theory, metric graph theory and graph path convexities. The following chapters focus exclusively on the geodesic convexity, including motivation and background, specific definitions, discussion and examples, results, proofs, exercises and open problems. The main and most st?udied parameters involving geodesic convexity in graphs are both the geodetic and the hull number which are defined as the cardinality of minimum geodetic and hull set, respectively. This text reviews various results, obtained during the last one and a half decade, relating these two  invariants and some others such as convexity number, Steiner number, geodetic iteration number, Helly number, and Caratheodory number to a wide range a contexts, including products, boundary-type vertex sets, and perfect graph families. This monograph can serve as a supplement to a half-semester graduate course in geodesic convexity but is primarily a guide for postgraduates and researchers interested in topics related to metric graph theory and graph convexity theory.  ?
on
Desktop
Tablet
Mobile

More in Differential & Riemannian Geometry

Nonlinear Continua - Eduardo N. Dvorkin

eTEXT

$159.01

Generalized Curvatures - Jean-Marie Morvan

eTEXT

Mixed Hodge Structures - Chris A.M. Peters

eTEXT