Get Free Shipping on orders over $79
Generalized Principal Component Analysis : Interdisciplinary Applied Mathematics : Book 40 - René Vidal

Generalized Principal Component Analysis

By: René Vidal, Yi Ma, Shankar Sastry

eText | 11 April 2016

At a Glance

eText


$109.00

or 4 interest-free payments of $27.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc.

This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.

Rene Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.

Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.

on
Desktop
Tablet
Mobile

More in Cybernetics & Systems Theory

The Science of Happy - King Poet

eBOOK

The Unity of Forces - manoranjan ghoshal

eBOOK

Life is a wave function - Abhay Kulkarni

eBOOK

AI The Gift of a Lifetime - Loïc Molla

eBOOK

The Learning Universe - Azhar Feili

eBOOK