Get Free Shipping on orders over $79
Generalized Matrix Inversion : A Machine Learning Approach - Predrag S. Stanimirovi?

Generalized Matrix Inversion

A Machine Learning Approach

By: Predrag S. Stanimirovi?, Yimin Wei, Shuai Li, Dimitrios Gerontitis, Xinwei Cao

eText | 1 January 2026

At a Glance

eText


$329.00

or 4 interest-free payments of $82.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book presents a comprehensive exploration of the dynamical system approach in numerical linear algebra, with a special focus on computing generalized inverses, solving systems of linear equations, and addressing linear matrix equations. Bridging four major scientific domains—numerical linear algebra, recurrent neural networks (RNNs), dynamical systems, and unconstrained nonlinear optimization—this book offers a unique, interdisciplinary perspective.

Generalized Matrix Inversion: A Machine Learning Approach explores the theory and application of recurrent neural networks, particularly continuous-time recurrent neural networks (CTRNNs), which use systems of ordinary differential equations to model the influence of inputs on neurons. Special attention is given to CTRNNs designed for finding zeros of equations or minimizing nonlinear functions, with detailed coverage of two important classes: Gradient Neural Networks (GNN) and Zhang (Zeroing) Neural Networks (ZNN). Both time-varying and time-invariant models are examined across scalar, vector, and matrix cases.

Based on the authors' research that has been published in leading scientific journals, the book spans a variety of disciplines, including linear and multilinear algebra, generalized inverses, recurrent neural networks, dynamical systems, time-varying problem solving, and unconstrained nonlinear optimization. Readers will find a global overview of activation functions, rigorous convergence analysis, and innovative improvements in the definition of error functions for GNN and ZNN dynamic systems.

Generalized Matrix Inversion: A Machine Learning Approach is an essential resource for researchers and practitioners seeking advanced methods at the intersection of machine learning, optimization, and matrix computation.

on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI-Powered Search - Trey Grainger

eBOOK

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK