Get Free Shipping on orders over $79
Fluid Dynamics : Part 2: Asymptotic Problems of Fluid Dynamics - Anatoly I. Ruban

Fluid Dynamics

Part 2: Asymptotic Problems of Fluid Dynamics

By: Anatoly I. Ruban

eText | 20 August 2015 | Edition Number 1

At a Glance

eText


$107.49

or 4 interest-free payments of $26.87 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This is the second volume in a four-part series on fluid dynamics: Part 1. Classical Fluid Dynamics Part 2. Asymptotic Problems of Fluid Dynamics Part 3. Boundary Layers Part 4. Hydrodynamic Stability Theory The series is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. In Part 2 the reader is introduced to asymptotic methods, and their applications to fluid dynamics. Firstly, it discusses the mathematical aspects of the asymptotic theory. This is followed by an exposition of the results of inviscid flow theory, starting with subsonic flows past thin aerofoils. This includes unsteady flow theory and the analysis of separated flows. The authors then consider supersonic flow past a thin aerofoil, where the linear approximation leads to the Ackeret formula for the pressure. They also discuss the second order Buzemann approximation, and the flow behaviour at large distances from the aerofoil. Then the properties of transonic and hypersonic flows are examined in detail. Part 2 concludes with a discussion of viscous low-Reynolds-number flows. Two classical problems of the low-Reynolds-number flow theory are considered, the flow past a sphere and the flow past a circular cylinder. In both cases the flow analysis leads to a difficulty, known as Stokes paradox. The authors show that this paradox can be resolved using the formalism of matched asymptotic expansions.
on
Desktop
Tablet
Mobile

You Can Find This eBook In

More in Physics

Coming of Age in the Milky Way - Timothy Ferris

eBOOK

RRP $33.99

$27.99

18%
OFF

This product is categorised by