Get Free Shipping on orders over $79
Essential Math for Data Science : Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics - Thomas Nield

Essential Math for Data Science

Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics

By: Thomas Nield

eText | 26 May 2022 | Edition Number 1

At a Glance

eText


$64.89

or 4 interest-free payments of $16.22 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career.

Learn how to:

  • Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning
  • Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon
  • Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance
  • Manipulate vectors and matrices and perform matrix decomposition
  • Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks
  • Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market
on
Desktop
Tablet
Mobile

More in Probability & Statistics

R for Non-Programmers - Daniel Dauber

eBOOK

untitled - TBC ANZ

eBOOK

$31.99

Statistics by Simulation : A Synthetic Data Approach - Carsten F. Dormann

eBOOK