Get Free Shipping on orders over $79
Ensemble Classification Methods with Applications in R - Esteban Alfaro

Ensemble Classification Methods with Applications in R

By: Esteban Alfaro, Matias Gamez, Noelia Garcia

eText | 15 August 2018 | Edition Number 1

At a Glance

eText


$202.39

or 4 interest-free payments of $50.60 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

An essential guide to two burgeoning topics in machine learning - classification trees and ensemble learning 

Ensemble Classification Methods with Applications in R introduces the concepts and principles of ensemble classifiers methods and includes a review of the most commonly used techniques. This important resource shows how ensemble classification has become an extension of the individual classifiers. The text puts the emphasis on two areas of machine learning: classification trees and ensemble learning. The authors explore ensemble classification methods’ basic characteristics and explain the types of problems that can emerge in its application.

Written by a team of noted experts in the field, the text is divided into two main sections. The first section outlines the theoretical underpinnings of the topic and the second section is designed to include examples of practical applications. The book contains a wealth of illustrative cases of business failure prediction, zoology, ecology and others. This vital guide:

  • Offers an important text that has been tested both in the classroom and at tutorials at conferences
  • Contains authoritative information written by leading experts in the field
  • Presents a comprehensive text that can be applied to courses in machine learning, data mining and artificial intelligence 
  • Combines in one volume two of the most intriguing topics in machine learning: ensemble learning and classification trees

Written for researchers from many fields such as biostatistics, economics, environment, zoology, as well as students of data mining and machine learning, Ensemble Classification Methods with Applications in R puts the focus on two topics in machine learning: classification trees and ensemble learning.

 

on
Desktop
Tablet
Mobile

More in Probability & Statistics

untitled - TBC ANZ

eBOOK

$31.99

An Introduction to Stochastic Modeling - Gabriel Lord

eBOOK

RRP $145.41

$130.99

10%
OFF
Bayesian Entrepreneurship - Ajay Agrawal

eBOOK

RRP $202.70

$162.99

20%
OFF