Get Free Shipping on orders over $79
Differential Geometry : Basic Notions and Physical Examples - Marcelo Epstein

Differential Geometry

Basic Notions and Physical Examples

By: Marcelo Epstein

eText | 2 July 2014

At a Glance

eText


$189.00

or 4 interest-free payments of $47.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Differential Geometry offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics.

Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown to be relevant to the description of space-time, configuration spaces of mechanical systems, symmetries in general, microstructure and local and distant symmetries of the constitutive response of continuous media.

Once these ideas have been grasped at the topological level, the differential structure needed for the description of physical fields is introduced in terms of differentiable manifolds and principal frame bundles. These mathematical concepts are then illustrated with examples from continuum kinematics, Lagrangian and Hamiltonian mechanics, Cauchy fluxes and dislocation theory.

This book will be useful for researchers and graduate students in science and engineering.

on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 10th September 2016

More in Differential & Riemannian Geometry

Nonlinear Continua - Eduardo N. Dvorkin

eTEXT

$159.01

Generalized Curvatures - Jean-Marie Morvan

eTEXT

Mixed Hodge Structures - Chris A.M. Peters

eTEXT