Get Free Shipping on orders over $79
Deep Learning for Remote Sensing Images with Open Source Software : Signal and Image Processing of Earth Observations - Rémi Cresson

Deep Learning for Remote Sensing Images with Open Source Software

By: Rémi Cresson

eText | 15 July 2020 | Edition Number 1

At a Glance

eText


$78.09

or 4 interest-free payments of $19.52 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

In today's world, deep learning source codes and a plethora of open access geospatial images are readily available and easily accessible. However, most people are missing the educational tools to make use of this resource. Deep Learning for Remote Sensing Images with Open Source Software is the first practical book to introduce deep learning techniques using free open source tools for processing real world remote sensing images. The approaches detailed in this book are generic and can be adapted to suit many different applications for remote sensing image processing, including landcover mapping, forestry, urban studies, disaster mapping, image restoration, etc. Written with practitioners and students in mind, this book helps link together the theory and practical use of existing tools and data to apply deep learning techniques on remote sensing images and data.

Specific Features of this Book:

  • The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow)
  • Presents approaches suited for real world images and data targeting large scale processing and GIS applications
  • Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration)
  • Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills.
  • Includes deep learning techniques through many step by step remote sensing data processing exercises.
on
Desktop
Tablet
Mobile

Other Editions and Formats

Hardcover

Published: 16th July 2020

More in Geographical Information Systems GIS & Remote Sensing